- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0005000001000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Kovashka, Adriana (6)
-
Ye, Keren (6)
-
Zhang, Mingda (3)
-
Berent, Jesse (1)
-
Hwa, Rebecca (1)
-
Li, Wei (1)
-
Qin, Danfeng (1)
-
Thomas, Christopher (1)
-
Unal, Mesut Erhan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (3)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Unal, Mesut Erhan; Ye, Keren; Zhang, Mingda; Thomas, Christopher; Kovashka, Adriana; Li, Wei; Qin, Danfeng; Berent, Jesse (, IEEE Transactions on Pattern Analysis and Machine Intelligence)
-
Ye, Keren; Kovashka, Adriana (, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR))null (Ed.)
-
Ye, Keren; Kovashka, Adriana (, Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI))null (Ed.)
-
Ye, Keren; Zhang, Mingda; Kovashka, Adriana (, Proceedings of the Winter Conference on Applications of Computer Vision (WACV))null (Ed.)
-
Zhang, Mingda; Ye, Keren; Hwa, Rebecca; Kovashka, Adriana (, The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020)Growing up with bedtime tales, even children could easily tell how a story should develop; but selecting a coherent and reasonable ending for a story is still not easy for machines. To successfully choose an ending requires not only detailed analysis of the context, but also applying commonsense reasoning and basic knowledge. Previous work has shown that language models trained on very large corpora could capture common sense in an implicit and hard-to-interpret way. We explore another direction and present a novel method that explicitly incorporates commonsense knowledge from a structured dataset, and demonstrate the potential for improving story completion.more » « less
An official website of the United States government

Full Text Available